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Fig. 1. Given an unregistered collection of image patches depicting an environment at vastly different scales, our approach uses adversarial training to obtain
continuous and coherent scale spaces. Here, we showcase the reconstructed scale space of a painting, captured in its entirety, from the overall structure (1x) to
the cracks in the oil paint (256x). Users can freely explore the scale space at interactive rates.

The real world exhibits rich structure and detail across many scales of ob-

servation. It is difficult, however, to capture and represent a broad spectrum

of scales using ordinary images. We devise a novel paradigm for learning a

representation that captures an orders-of-magnitude variety of scales from

an unstructured collection of ordinary images. We treat this collection as

a distribution of scale-space slices to be learned using adversarial training,

and additionally enforce coherency across slices. Our approach relies on a

multiscale generator with carefully injected procedural frequency content,

which allows to interactively explore the emerging continuous scale space.

Training across vastly different scales poses challenges regarding stability,

which we tackle using a supervision scheme that involves careful sampling

of scales. We show that our generator can be used as a multiscale generative

model, and for reconstructions of scale spaces from unstructured patches.

Significantly outperforming the state of the art, we demonstrate zoom-in

factors of up to 256x at high quality and scale consistency.
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1 INTRODUCTION
The physical world exhibits a vast variety of scales, ranging from

subatomic particles to galaxy clusters [Eames and Eames 1968]. A

significant subset of these scales is within the reach of the human

observer. A rich visual representation of the world, therefore, needs

to account for as many scales as possible [Lindeberg 2013], while

ordinary images can only capture a small slice of the scale spectrum

due to two fundamental limitations: They have finite extent and
finite resolution [Koenderink 1984].

Solutions to overcome these limitations can roughly be divided

into three categories (Fig. 2a-c). Level-of-detailmethods [Mallat 1989;

Witkin 1987] construct a set of coarser-scale versions from a given

full high-resolution image (Fig. 2a), but obtaining the entire original

image becomes infeasible for large scale spans. In contrast, super-
resolution infers finer scales from a coarse-scale image (Fig. 2b),

hallucinating plausible higher-frequency content [Moser et al. 2023;

Wang et al. 2020], but seems to reach an upper limit of upsampling

in the order of 10x. Finally, methods that perform structured aggre-
gation [Halladjian et al. 2019; Xiangli et al. 2022] combine multiple

images into a multiscale representation (Fig. 2c), but require dense

capture and careful registration of images across all scales.
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Fig. 2. Different paradigms to obtain a multiscale image representation.
Orange blocks indicate the location of the input data in scale space (trape-
zoid). a) Level-of-detail methods require a full image at the finest scale and
construct the scale space using low-pass filtering. b) Super-resolution infers
slightly finer scales from a coarse-scale image. c) Approaches relying on
structured aggregation assume registered images. d) Our approach relies
on an unstructured collection of low-resolution input images: The locations
of the images in scale space are unknown (question marks in the orange
blocks) and do not even necessarily depict the same scene. We nevertheless
produce full coherent scale spaces.

We introduce a novel approach for the construction of a multi-

scale image representation from a set of low-resolution, unstructured
images of a 2D environment (Fig. 2d). In particular, we consider

images that have the same resolution but observe the environment

at different scales, i.e., finer-scale observations cover smaller patches

(Fig. 3). To alleviate the need for costly registration,we do not require
information on the location of the patches, but only an approximate

indication of scale. Such data corresponds, for example, to remote

sensing applications whose objective is to capture a geographical

point of interest at scales as various as the different acquisition

tools e.g., satellites, airplanes, or drones flying at different altitudes.

Note that the previous work discussed above cannot process this

data. The absence of a single high-resolution image does not allow

level-of-detail, the scale spans we consider are orders of magnitude

above the capabilities of super-resolution, and missing positional

cues prevent structured aggregation.

We observe that an unstructured collection of image patches

across scales constitutes a data distribution that can be learned

using adversarial training [Goodfellow et al. 2014]. Our key con-

tribution is a neural architecture and training paradigm that treats

multiscale image patches as slices of an underlying continuous scale

space and enforces coherency across space and scale. This leads to

two complementary training goals: (i) 2D slices of the generated

scale-space(s) should match the distribution of the training data,

and (ii) the generated scale space(s) should be coherent across all

dimensions.

We build our representation upon an alias-free StyleGAN genera-

tor network [Karras et al. 2021] augmented with a set of progressive

Fourier features distributed across multiple layers that generate

tailored latent frequency content across the scale spectrum. Our

training process is stable despite the wide range of scales and is

specifically designed to enforce cross-scale consistency.

Once trained, we can interactively query our network with a posi-

tion and scale level to obtain a corresponding generated scale-space

slice. As shown in the companion video, it is possible to continu-

ously zoom into any location of the sample or pan over the image at

a chosen scale. Our generator synthesizes a single fixed-resolution

image at a time but multiple adjacent samples can be seamlessly

FineCoarse

Fig. 3. Typical samples from a multiscale dataset. The images have a fairly
low resolution (256 × 256 for us) and are unstructured, i.e., we do not have
information about relative 2D location, allowing uncomplicated capture
or collection without the need for registration. Images courtesy of Bartosz
Wojczyński [2021].

stitched together to yield coherent composites of up to several gi-

gapixels at arbitrary scales. We demonstrate magnifications of up

to 256x, i.e., one pixel in a 256x256 image can be enlarged to yield a

full-resolution image with plausible high-frequency structure and

details while being coherent across the continuous scale spectrum

(Fig. 1).

We demonstrate two applications of our method: First, we show

that we are able to aggregate the highly unstructured input into a co-

herent scale space, i.e., our approach produces a pseudo-reconstruction
of the underlying scale space by learning a regularized distribution

of the input patches. In doing so, our approach does not only implic-

itly register the patches, but also creates a compact representation,

requiring 885x less parameters than the number of pixel values than

an equivalent gigapixel images. Second, we show that we can learn

a generative model of scale spaces, i.e., provided with image patches

from different environments, our model allows to draw multiple,

independent yet consistent scale-space samples.

We evaluate our method on several satellite datasets, a multiscale

dataset consisting of an unstructured collection of images from

the internet, as well as synthetic datasets created by extracting

multiscale patches from gigapixel images. The latter provides us

with ground-truth data for quantitative analysis. Our datasets, code,

and trained models can be found at https://scalespacegan.mpi-inf.

mpg.de.

In summary, our contributions are 1) a novel paradigm based

on adversarial training to obtain a compact continuous multiscale

image representation from unstructured ordinary images, 2) a gen-

erator architecture and training methodology for stable and scale-

consistent scale space generation, 3) the application of our approach

for multiscale unstructured image aggregation and as a multiscale

generative model, 4) an interactive rendering application (approx.

20 fps) demonstrating the inference speed and data compression

performance of our method.

2 RELATED WORK

2.1 Multiscale Representations
The representation of signals at multiple scales has a long history in

mathematics, signal processing, as well as computer graphics and

computer vision. Arguably the most concise description of phenom-

ena at multiple scales is delivered by fractals [Mandelbrot 1982]. It

provides a framework for modeling self-similarities and complexity

across the (possibly infinite) scale spectrum, but is typically readily
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applicable only to a narrow class of signals. Linear scale space the-

ory [Iijima 1959; Lindeberg 2013; Witkin 1987] aims at representing

images at multiple scales by embedding them into a one-parameter

family of progressively smoothed versions. Scale-space methods are

omnipresent in computer vision from the earliest methods [Marr

and Hildreth 1980] till today [Lindeberg 2022]. Pyramids [Burt 1981;

Williams 1983] are more compact multiscale representations, which

perform scale discretization and spatial subsampling in addition

to smoothing. Wavelets [Daubechies 1988; Mallat 1989] represent

signals across scales by constructing a multiscale basis.

Within the torrent of deep learning in the last decade, many

neural continuous multiscale representations have been developed.

A broad range of visual-computing primitives has been considered,

including images [Belhe et al. 2023; Chen et al. 2021a; Paz et al.

2022; Xu et al. 2021], geometry [Takikawa et al. 2021], materials

[Kuznetsov et al. 2021], radiance fields [Barron et al. 2021; Xiangli

et al. 2022], as well as general-purpose neural architectures [Fathony

et al. 2020; Lindell et al. 2022; Saragadam et al. 2022; Shekarforoush

et al. 2022].

All of the works listed above are designed to represent an original

signal alongside its coarser-scale equivalents. Consequently, they

require explicit access to the entire signal at the finest scale. This
poses a severe problem when considering an orders-of-magnitude

variety of scales, as, in this case, the finest scale contains details

that are hard to synthesize or capture. In contrast, in this work,

we develop a multiscale generative image model, which only re-

quires an unstructured collection of fairly low-resolution images that

capture patches of an environment at different scales. Similar to

previous works [Barron et al. 2021], we employ progressive Fourier

embeddings to steer our generator.

In the context of multiscale data visualization, exploration sys-

tems commonly blend between different representations best suited

to convey information at a specific scale [Halladjian et al. 2019;

Klashed et al. 2010; Mohammed et al. 2017; Tao et al. 2019]. Similar

ideas have been utilized in stitching-based variable-resolution image

creation [Licorish et al. 2021]. These approaches require registered

images to be able to combine different sources of information, while

our method relies on unstructured image collections. We, too, sup-

port interactive exploration of the scale space of our samples, due

to a lightweight generator design.

2.2 Super-resolution
With origins in image restauration and deconvolution [Parker 2010;

Wiener et al. 1949], single-image super-resolution methods aim at

increasing the resolution of an image while synthesizing plausible

higher-frequency content. Over the last years, feed-forward CNN-

based approaches have established strong baselines for fixed-scale

upsampling [Chen et al. 2021b; Liang et al. 2021; Lim et al. 2017;

Lu et al. 2021; Shi et al. 2016; Wang et al. 2020; Yang et al. 2020;

Zhang et al. 2018b,c]. Arbitrary-scale super-resolution methods

take the upsampling factor as an additional input [Hu et al. 2019;

Son and Lee 2021; Song et al. 2023; Vasconcelos et al. 2023; Wang

et al. 2021a; Wei and Zhang 2023], allowing them to synthesize a

range of scales. Generative models have been used as strong priors

for super-resolution [Moser et al. 2023], with a particular focus on

GANs [Chan et al. 2021; Menon et al. 2020; Wang et al. 2021b, 2018],

and, recently, diffusion models [Gao et al. 2023; Kawar et al. 2022;

Lin et al. 2023a; Wang et al. 2023c,b]. Typical upsampling factors

for super-resolution methods are in the order of 10x – more than

an order of magnitude less than what our approach can handle.

2.3 Scale-aware Generative Models and Infinite Images
The research on synthesizing infinite images and multi-scale images

starts with textures. Early works on texture synthesis employed non-

parametric methods to generate infinite [Efros and Freeman 2001;

Efros and Leung 1999] and multi-scale [Han et al. 2008] textures.

Subsequent advancements revealed that matching statistics of a

pretrained CNN increases quality [Snelgrove 2017].

Since the invention of GANs [Goodfellow et al. 2014], there has

been a remarkable surge in the quality of natural image synthesis,

with the StyleGAN family being a representative example [Karras

et al. 2020a, 2021, 2019, 2020b; Sauer et al. 2022]. The success of GANs

has motivated researchers to explore the synthesis of very high-

resolution or infinite images. A number of works have modified the

GAN pipeline to produce a high-resolution image [Frühstück et al.

2019; Lin et al. 2022, 2023b; Rodriguez-Pardo and Garces 2022; Zhu

and Kelly 2021]. Apart from GANs, high-resolution synthesis based

on transformers [Esser et al. 2021; Liang et al. 2022] and diffusion

models [Bond-Taylor and Willcocks 2024; Lee et al. 2023; Zhang

et al. 2023] have been studied. However, all these approaches only

consider images at a single scale but do not study how to learn and

synthesize multi-scale images.

Even within a single natural image, content re-appears at multiple

scales [Glasner et al. 2009; Zontak and Irani 2011]. This property has

been exploited to perform image deblurring and super-resolution

[Bell-Kligler et al. 2019; Michaeli and Irani 2014; Shocher et al. 2018],

and to synthesize images with new layouts, structures, and sizes

[Shaham et al. 2019; Shocher et al. 2019; Zhou et al. 2018]. This class

of methods can only operate on a narrow range of scales, as self-

similarities typically do not persist across orders-of-magnitude scale

ranges. For example, when viewing a large painting from a distance,

overall patterns and statistics are quite different from the individual

paint strokes and cracks seen up close (Fig. 1). Our approach can also

be used to reconstruct a single scale space, but assumes unstructured

patches at multiple scales as input and therefore does not have to

rely only on self-similarity.

The works most related to ours are AnyresGAN [Chai et al. 2022]

and ScaleParty [Ntavelis et al. 2022], which can handle multi-scale

images in both training and inference. However, these methods

consider images of the same semantic level (e.g., images of human

faces or animals) with a relatively narrow scale range, with the finest

scale being only a 4-8x zoom of the coarsest scale. In this work, we

consider a much broader scale range supporting zoom levels up to

256x, which involves the emergence of semantically new content

(e.g., from an entire galaxy to individual stars) and thus introduces

significant challenges. A concurrent work also studies such drastic

multi-scale image synthesis based on diffusion models [Wang et al.

2023a]. However, it requires carefully crafted text prompts for each

scale, which is prone to imprecise descriptions. In addition, this
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a) b)

Fig. 4. (a) A scale space is a multiscale representation of an image. It is a continuous function of spatial coordinates x = (𝑥, 𝑦)𝑇 and bandwidth 𝜔 . Increasing
𝜔 introduces higher and higher frequencies. (b) An 𝑥-𝜔-slice through the volume in a). The resolution of spatial discretizations (white grids) needs to be
adapted to a given 𝜔 to capture all frequency content. Input to our method is an unstructured collection of 2D image patches that sample the scale space
(green bars). Each patch has a continuous location and scale. All patches have the same resolution (𝑁𝑝 = 8 in this visualization), which leads to different
coverage of the spatial domain depending on their scale. Our method generates orders-of-magnitude scale spaces from this unstructured information. Notice
that it is difficult to depict the actual resolution levels in a figure this size. We consider scale spaces, where the image at the top already requires a resolution
of 256 × 256, leading to tens of thousands of pixels at the bottom.

method can only zoom into the center of the image, while our

method creates full scale spaces.

3 MULTISCALE IMAGES
The central object of interest in this work is the continuous scale

space 𝐼 of an image [Iijima 1959; Witkin 1987], which captures

versions of that image with different upper bounds on frequency

content. We write

𝐼 (x, 𝜔) = c, (1)

where c ∈ R3
is an RGB color, x = (𝑥,𝑦)𝑇 ∈ [−0.5, 0.5]2

is a

continuous location in the image plane, and 𝜔 ∈ R+ is an upper

frequency limit, also referred to as bandwidth. A low value of 𝜔

corresponds to an image with only little detail, while increasing 𝜔

progressively reveals structures of higher frequencies (Fig. 4a).

We are concerned with scale spaces in which𝜔 spans a substantial

interval [𝜔min, 𝜔max]. Here, 𝜔min is already high enough to repre-

sent an ordinary image (top face of the cube in Fig. 4a), and 𝜔max is

orders of magnitude larger than 𝜔min. To conveniently handle this

large dynamic range, we introduce the notion of scale 𝑠 , which we

define in the logarithmic domain:

𝑠 = 𝑠 (𝜔) = log
2

(
𝜔

𝜔min

)
∈ R≥0 . (2)

We further define 𝑠max = 𝑠 (𝜔max) to denote the full dynamic range

of scales for a particular 𝐼 . In this work, a typical dynamic range is

𝑠max = 8, i.e., the most detailed image contains frequencies that are

256x higher than those of the coarsest image.

We consider both location x and scale 𝑠 continuous parameters.

However, in order to learn a scale-space representation from ordi-

nary images, i.e., pixel arrays, as we set out to do in this work, we

need to be able to handle discretizations in x. We denote coordinate

samples on a regular grid as x𝑖 . According to the Nyquist-Shannon

sampling theorem [Antoniou 2006], a signal with bandwidth 𝜔

needs to be sampled at a rate of at least 2𝜔 to capture all available

detail and to avoid aliasing, referred to as the Nyquist limit. In our

setting, consequently, the required spatial resolution increases with

scale (white grids in Fig. 4b). Specifically, we need images with𝑁 ×𝑁
pixels, where

𝑁 = 𝑁 (𝑠) = ⌈
√

2𝜔min2
𝑠+1⌉ . (3)

The factor

√
2 accounts for frequency content along the diagonal of

the image plane, where the effective sampling rate is lower. Given

the very high dynamic ranges 𝑠max we consider, the required reso-

lution at the finest scale 𝑁max = 𝑁 (𝑠max) quickly leads to gigapixel

images. While, in theory, these ultra-high-resolution images con-

stitute perfect data to create a scale-space representation 𝐼 , they

are extremely difficult to produce. In practice, a large number of

ordinary images is captured using a sophisticated camera setup and

stitched together in a post-process [Brady et al. 2012; Cossairt et al.

2011; Kopf et al. 2007]. In the next section, we describe a novel,

fundamentally different approach for learning a scale space based

on adversarial training.

4 METHOD
We propose an algorithm to obtain an orders-of-magnitude scale

space 𝐼 , which relies on an unstructured collection of ordinary, low-

resolution images that constitute patch samples of 𝐼 . Each patch has

a fixed resolution of 𝑁𝑝 × 𝑁𝑝 pixels, slices the scale-space volume

at a continuous scale 𝑠𝑝 , and is centered at a continuous location

x𝑝 . The combination of fixed resolution 𝑁𝑝 and varying scale 𝑠𝑝
across patches leads to varying effective patch sizes in the spatial

domain (green bars in Fig. 4b): A patch at a low 𝑠𝑝 occupies a sig-

nificant portion of the spatial domain, while a patch at a high 𝑠𝑝
only covers a tiny fraction of it. Crucially, we do not assume any
knowledge about the 2D location x𝑝 of each patch. This significantly
lifts the capture burden, as neither a specialized device nor a sophis-

ticated acquisition protocol is required. In fact, we will demonstrate

that our approach generates high-quality scale spaces even when

applied to unstructured image collections from the internet that do

not depict the same scene. We require, however, a coarse estimate

of scale 𝑠𝑝 per patch. We argue this does not impose unreasonable

restrictions, as, for many application domains, 𝑠𝑝 can be estimated

from image metadata, e.g., focal length.

Instead of relying on the common approach of patch alignment

and stitching, we train a deep generative model for obtaining 𝐼 from

the input data (Fig. 5). Specifically, we design a generator 𝐺 that

is able to learn a continuous orders-of-magnitude scale space 𝐼𝐺 .

𝐺 takes as input a random vector z, as well as a continuous patch
location x𝑝 and scale 𝑠𝑝 , and renders one 𝑁𝑝 × 𝑁𝑝 image at a time.
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Fig. 5. Overview of our approach. Our multiscale generator𝐺 takes a patch
location x𝑝 and scale 𝑠𝑝 , as well as a random seed z as input and synthesizes
a corresponding image. A discriminator 𝐷 compares the distributions of
synthesized and data patches. Our generator architecture augments an alias-
free StyleGAN with carefully designed Fourier features that are distributed
across network layers, which allows to synthesize image patches from
continuous orders-of-magnitude scale spaces. Dataset patches courtesy of
Rijksmuseum [2019].

Continuously varying x𝑝 and 𝑠𝑝 produces corresponding slices of

the learned 𝐼𝐺 [Bora et al. 2018]. This allows interactive exploration

of 𝐼𝐺 , while adjacent synthesized patches can be stitched together

to yield seamless, arbitrary-resolution composites. We train𝐺 in an

adversarial fashion [Goodfellow et al. 2014], i.e., we jointly train a

discriminator 𝐷 that compares the distribution of generated patches

from 𝐼𝐺 to the distribution of data patches from 𝐼 . During train-

ing, z, x𝑝 and 𝑠𝑝 are randomly sampled. An additional consistency

loss [Chai et al. 2022; Ntavelis et al. 2022] encourages coherency

across scales.

Our statistical approach is surprisingly versatile and supports two

modes of operation. First, given a collection of unstructured input

patches from a single scale space 𝐼 , i.e., multiscale observations of

the same scene, 𝐼𝐺 converges to a plausible, coherent approximation

of 𝐼 . While we find providing random inputs z to𝐺 is necessary for

stable training, a converged generator 𝐺 disregards z, producing
negligible variations of the output. We refer to this solution as

pseudo-reconstruction, as 𝐼𝐺 might differ from 𝐼 in the arrangement

of details, but captures the overall multiscale structure well. Note

that in addition to missing knowledge about the patch locations x𝑝 ,
the patches do not exhaustively cover 𝐼 at all scales. However, due to

the generative capabilities of our framework, missing content will

be seamlessly and consistently hallucinated across all scales. Along

with implicitly performing an alignment of the input patches,𝐺 is

a very compact representation: It has up to 885x less parameters

than the corresponding gigapixel image at 𝑠max requires RGB values

stored in its pixel grid.

In the second mode of operation, we train 𝐺 with a collection

of input patches from different environments. The training patches

depict different scenes from a (narrow) class at different scales. In

this case, a converged𝐺 produces a distribution of scale spaces 𝑝 (𝐼𝐺 ),
where different z result in different samples from that distribution.

To achieve our goal of learning images across scales using ad-

versarial training, we require two essential ingredients: First, we

design a generator 𝐺 that can synthesize scale spaces 𝐼𝐺 with large

dynamic range 𝑠max. Second, we develop a training procedure that

allows 𝐺 to robustly learn coherent scale spaces. We give details on

these ingredients in Sec. 4.1 and Sec. 4.2, respectively.

4.1 Multiscale Generator
We require a generator𝐺 that is able to encode orders-of-magnitude

scale spaces 𝐼𝐺 . Importantly, while the output of 𝐺 is a pixel grid,

the model has to be intrinsically continuous to be a faithful repre-

sentation of 𝐼 and to allow for arbitrary translation and zooming.

Fortunately, a continuous generator design is available in the form

of alias-free StyleGAN (StyleGAN3) [Karras et al. 2021], which al-

lows continuous translation of the generated content and has been

shown to support some zooming [Chai et al. 2022]. However, we

find that a vanilla StyleGAN3 generator architecture is not able to

synthesize scale spaces for the high 𝑠max we require. Therefore, we

extend it to the multiscale setting.

The StyleGAN3 generator relies on Fourier features f ∈ R𝑑f , i.e.,

directional 2D sinusoids evaluated on a regular grid x𝑖 , i.e., they can
be represented in the spatial domain as a pixel grid with 𝑑f channels
(Fig. 6a):

f𝑗 (x𝑖 ) = sin

(
2𝜋𝝎𝑇

𝑗 x𝑖
)
, (4)

where 𝝎 𝑗 ∈ R2
are 𝑑f different frequency vectors. The features

f are fed into a sequence of layers of a synthesis network 𝑆 , each

of which performs non-linear operations. Occasionally, intermedi-

ate neural features are up-sampled to a higher spatial resolution.

The non-linear operations are modulated by “style” vectors, which

arise from feeding the latent code z through a mapping network𝑀

(Fig. 5). Both, non-linear operations and up-sampling, are carefully

designed such that the resulting neural features only contain spatial

frequencies below the Nyquist limit dictated by the resolution of

the respective layer. A direct consequence of this approach is that

the entire generator can be treated as a continuous function, despite

relying on regular grids for the actual computations. We choose a

variant of the generator, where the neural operations are applied

point-wise (R-configuration) [Karras et al. 2021]. In addition to ob-

taining rotational equivariance, this configuration is well suited

for multiscale generation, as the alternative – spatial convolutions

– typically operates on fixed-size neighborhoods, whose meaning

varies with scale. We synthesize images of resolution 𝑁𝑝 = 256.

By design, procedurally shifting Fourier features f at the begin-
ning of the processing sequence results in alias-free translation of

the output image (Fig. 6b). To incorporate scaling, in the first step,

we transform all grid coordinates x𝑖 via

𝑔(x𝑖 ; x𝑝 , 𝑠𝑝 ) = 2
−𝑠𝑝 (

x𝑖 − x𝑝
)
, (5)

and feed the corresponding shifted and scaled Fourier features

f𝑗
(
𝑔(x𝑖 ; x𝑝 , 𝑠𝑝 )

)
into 𝑆 . Unfortunately, choosing a high 𝑠𝑝 stretches

f to such an extent that it degrades to an almost constant function

(Fig. 6c). Unsurprisingly, we find that 𝑆 cannot learn to synthe-

size meaningful images given such an input. Simply increasing

frequencies ∥𝝎 𝑗 ∥ is not a solution to the problem, as we need to

stay below the Nyquist limit of the first layer. Therefore, in a second

design iteration, we could indeed sample higher frequencies 𝝎 𝑗 ,

but progressively blend them in only after 𝑔 has stretched out the

corresponding f𝑗 far enough to stay below the Nyquist limit, using

some blending function 𝑤 (Fig. 6d). While this strategy provides

𝑆 with meaningful frequency content across all scales, we observe

drifting and tearing in the output images during zooming. This is

because we are interfering with the positional encoding provided
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Fig. 6. (a) The StyleGAN3 generator rasterizes Fourier features f (one is
shown) and feeds them through a synthesis network 𝑆 to obtain an output
image. (b) A spatial offset of f results in a shifted image. (c) Scaling up f leads
to flat feature maps, which 𝑆 cannot translate into a meaningful image. In
the setups a)-c), the features f are not modulated (constant weighting 𝑤).
(d) Progressively blending in different f using the weighting function 𝑤 (𝑠𝑝 )
results in a permanent re-scaling of individual features f (three out of many
are shown), leading to unstable results. (e)We create Fourier features in bins
(two bins – pink and blue – are shown) and blend in all features per bin at
the same time. This leads to a significant reduction of blending (here, only
the pink bin needs blending). Additionally, we inject features into different
layers of 𝑆 , significantly enhancing coherency across scales.

by the Fourier features in Eq. 4: The effect of scaling f𝑗 is not dis-
tinguishable from the effect of shifting the input position x. This
ambiguity is exacerbated by the severe non-linearity of 𝑆 .

We address this problem in our final design (Fig. 6e), which is

based on two crucial observations. First, careful binning of Fourier

features and simultaneous blending per bin significantly reduces the

amount of re-weighting necessary. Second, the less non-linear layers

are operating in between Fourier features and the final image, the

less positional distortions they can cause. Consequently, we employ

a re-assignment of binned Fourier features to different layers of 𝑆 .

For frequency binning, we consider non-overlapping scale inter-

vals of size Δ𝑠 , and create 𝑁 = ⌈𝑠max/Δ𝑠⌉ corresponding frequency

bins 𝐹𝑘 , where 𝑘 ∈ {0 . . . 𝑁 − 1}. For each 𝐹𝑘 , we randomly sample

512 frequencies with a maximum magnitude of 2
𝑠base+Δ𝑠 ·𝑘

, where

𝑠
base

is a hyper-parameter. Fig. 7 shows a frequency distribution for

two bins. We set Δ𝑠 = 3 and 𝑠
base

= 6 in all our experiments. We
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Fig. 7. Distribution of Fourier features f𝑗 across bins and generator layers.
Each point represents a 2D frequency 𝝎 𝑗 (magnitude is visualized in log
space). Frequencies for different bins 𝐹1 and 𝐹2 are displayed separately.
Colors signify the layer of the synthesis network into which a frequency is
injected – the higher the frequency, the later the injection.

now define a weighting function that blends in all Fourier features

per bin 𝐹𝑘 as a function of scale 𝑠𝑝 :

𝑤𝑘 (𝑠𝑝 ) = min

(
1,max

(
0, 𝑠𝑝 − Δ𝑠 · 𝑘 + 1

) )
. (6)

This weighting scheme blends in entire bins of Fourier features

simultaneously across regularly spaced, narrow intervals, which

significantly reduces the amount of blending happening during

zooming.

We inject the so-obtained weighted Fourier features into different

layers of 𝑆 [Diolatzis et al. 2023]. Specifically, in addition to injection

into the first layer, we concatenate Fourier features f𝑗 to neural

features after each up-sampling layer. The assignment of f𝑗 to the

individual layers is based on per-layer Nyquist limits. We iterate

over all injection layers in order and assign to the current layer

those f𝑗 that have not yet been assigned, if the following condition

is met: At the scale 𝑠𝑝 where the feature is blended in completely

via Eq. 6, the scaling in Eq. 5 lets f𝑗 fall below the layer’s Nyquist

limit (color coding in Fig. 7).

Our generator is now able to synthesize detailed and coherent
content across orders-of-magnitude scale ranges. Let’s train it!

4.2 Training
Our multiscale generator is trained in an adversarial fashion [Good-

fellow et al. 2014] using an image discriminator 𝐷 that compares

the distribution of generated patches to the distribution of train-

ing patches (Fig. 5). In addition to sampling the random vector z,
we also randomly sample the patch location x𝑝 and scale 𝑠𝑝 . Re-

garding training setup and hyper-parameters, we largely follow the

official StyleGAN3 [Karras et al. 2021] implementation and corre-

sponding recommendations of the authors, involving R1 regular-

ization [Mescheder et al. 2018] and adaptive discriminator augmen-

tation [Karras et al. 2020a]. However, we find that our multiscale

setting poses two significant challenges: (i) training stability, and (ii)
consistency of the learned 𝐼𝐺 across scales. We address these items

using a progressive patch sampling scheme and a scale consistency

loss, respectively.
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4.2.1 Progressive Patch Sampling. We observe that simple uniform

random sampling of patches across all scales does not converge

to satisfactory results [Chai et al. 2022]. We therefore use a patch

sampling scheme that prioritizes coarse scales at the beginning of

training and progressively shifts attention towards the finer scales

(Fig. 8a). This happens both for generated and for data patches; recall

that we assume access to a coarse estimate of scale 𝑠𝑝 per data patch.

We operate on scale bins of width one to avoid relying on exact

scale labels in the data. Specifically, we transition from a negative

exponential distribution (blue curve in Fig. 8a), over a uniform

distribution (yellow curve), to a linearly increasing distribution (pink

curve). We find that this progressive strategy leads to significantly

improved training stability.

4.2.2 Scale Consistency Loss. To encourage scale-coherent 𝐼𝐺 , we

follow ideas from Chai et al. [2022] and add an additional loss term

that compares two generated patches, separated by a scale offset

Δ𝑠𝑝 ∈ R+ [Irani and Peleg 1991]:

L𝑠 = Ez,x𝑝 ,𝑠𝑝 ,Δ𝑠𝑝

[
𝑑

(
𝑅Δ𝑠𝑝

(
𝐺 (z, x𝑝 , 𝑠𝑝 )

)
,𝐺 (z, x𝑝 , 𝑠𝑝 − Δ𝑠𝑝 )

)]
.

(7)

Here, 𝑅Δ𝑠𝑝 is a function that downsamples an image by a factor 2
Δ𝑠𝑝

.

𝑑 is an image distance metric that we apply to the two generated

patches, only considering pixels that appear in both patches. We im-

plement 𝑑 using a linear combination of ℓ1-norm and LPIPS [Zhang

et al. 2018a] distance. While we could backpropagate gradients

through both generator instances in Eq. 7, we find that training sta-

bility improves when we randomly choose only one of the generator

instances to receive gradients in each training iteration.

While we uniformly sample x𝑝 in Eq. 7, we find that the choice

of sampling distribution for Δ𝑠𝑝 has a strong influence on the scale

consistency of 𝐼𝐺 for our large 𝑠max. To make sure 𝐼𝐺 is globally con-

sistent, we want Δ𝑠𝑝 to be sampled in the full range [0, 𝑠𝑝 ], i.e., every
patch is compared against arbitrarily zoomed-out counterparts up

to 𝑠𝑝 = 0. However, a uniform distribution over [0, 𝑠𝑝 ] is not an
optimal choice. On the one hand, sampling a very low value for

Δ𝑠𝑝 results in almost identical patches, wasting training resources.

On the other hand, sampling a very high value results in images of

significantly different relative resolutions, i.e., 𝑅Δ𝑠𝑝 produces very

low-resolution patches to be compared against, providing not much

of a supervision signal either.

Our solution relies on the beta distribution B, which accounts for

all the above considerations:

𝑝 (Δ𝑠𝑝 |𝑠𝑝 ) =
𝐵( Δ𝑠𝑝𝑠𝑝

;𝛼, 𝛽)
𝑠𝑝

, (8)

where 𝛼 = 4

√︁
max(1, 𝑠𝑝 ), and 𝛽 = (𝛼 − 1) max(1, 𝑠𝑝 ) − 𝛼 + 2. The

parameters are chosen such that 𝑝 (Δ𝑠𝑝 |𝑠𝑝 ) has its mode at Δ𝑠𝑝 = 1

and gradually falls off in both directions, while still covering the

entire available scale interval (Fig. 8b).

5 EVALUATION
We evaluate our approach on the tasks of multiscale pseudo-recon-

struction (Sec. 5.1) and generation (Sec. 5.2). We further analyze

the components and properties of our method (Sec. 5.3). We urge

the reader to watch our supplemental video, in which we demon-

strate continuous zooming and panning through our obtained scale

spaces. Our generator runs at 20 fps, which allows highly interactive

exploration of our scale spaces.

Datasets and Training Details. We use a total of seven datasets for

our evaluation, all containing unstructured patches at a resolution

of 𝑁𝑝 = 256. For Himalayas and Spain, we consider multiscale

satellite data [Copernicus 2024]. Both datasets cover a square geo-

graphic region with 𝑠max = 8. Scale labels are obtained from satellite

metadata. To enable a broader range of quantitative evaluations,

we additionally employ three gigapixel images –Milkyway [Wo-

jczynski 2021] (𝑠max = 6), Moon [Speyerer et al. 2011] (𝑠max = 6)

and Rembrandt [Rijksmuseum 2019] (𝑠max = 8) –, from which

we extract random patches at multiple scales to simulate our input

setting.

To evaluate generative capabilities, we only consider patches

sampled from the finest four scales of each dataset source, denoted

HimalayasGen, SpainGen,MilkywayGen,MoonGen, and Rem-

brandtGen, respectively. The so-obtained data forces our models to

learn scale-space distributions. Further, the Sunflowers and Bricks

datasets are composed of a collection of images from Flickr. For Sun-

flowers, imageswere queried using the text strings “sunflower field”

and “sunflower”, while forBricks the search stringswere “brickwall”

and “bricks and cracks”. Obtained images are randomly cropped and

down-sampled to our target resolution to achieve 𝑠max = 4. Coarse

scale labels are assigned semi-automatically, taking into account the

specific query, image resolution, and crop window size. Naturally,

these datasets contains a variety of different scenes.

Datasets for pseudo-reconstruction contain 96k (milkyway and

moon) or 156k patches (himalayas, spain, rembrandt), while those

for generation contain 120k images, except for Sunflowers (185k

patches) and Bricks (234k patches). The supplemental document

lists more detailed dataset statistics.

We obtain converged models after 52-75 hours of training using

eight A100 GPUs. Our models occupy 38-62MB of disk space. During

inference, they require 2.8-3.1GB of VRAM.

Evaluating Scale Consistency. One crucial property of a scale space
is its consistency across scales. We employ two procedures to quan-

tify this. First, we create sequences of images, gradually zooming in.

Using off-the-shelf optical flow estimation [Teed and Deng 2020],
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Table 1. Quantitative evaluation of multiscale pseudo-reconstruction.

Dataset 𝑠max FID ↓
Scale Consistency

PSNRGT↑
Bias ↓ Angle ↓ EMD ↓ PSNRinter ↑

Himalayas 8 19.1 0.06 1.2 1.08 19.5 -

Spain 8 8.4 0.07 1.0 0.98 23.3 -

Milkyway 6 8.6 0.21 1.5 1.83 25.9 24.0

Moon 6 9.0 0.38 1.1 1.28 28.9 25.8

Rembrandt 8 14.6 0.20 1.2 1.91 28.9 -

Table 2. Quantitative evaluation of multiscale generation.

Dataset Method FID ↓
Scale Consistency

Bias ↓ Angle ↓ EMD ↓

MilkywayGen

AnyresGAN 30.6 0.81 11.3 12.22

PULSE - 0.43 6.9 8.69

Ours 28.3 0.11 1.2 1.55

MoonGen

AnyresGAN 18.4 0.95 11.8 12.8

PULSE - 0.41 19.7 17.75

Ours 6.3 0.23 2.2 2.73

HimalayasGen Ours 19.4 0.11 1.1 1.28

SpainGen Ours 9.7 0.05 1.1 1.17

RembrandtGen Ours 18.9 0.36 3.7 7.37

Sunflowers Ours 9.8 0.09 1.1 1.24

Bricks Ours 6.8 0.08 1.03 1.16

we compute per-pixel motion trajectories (Fig. 12). As a first metric

(inspired by tOF in [Chu et al. 2020]), we average all flow vectors

to obtain an estimate of overall bias; a perfect solution has radial

trajectories only (Fig. 12, right) and, thus, zero bias. For our second

metric, we fit a line to each trajectory and compute the angular

difference to the ground-truth trajectory [Çoğalan et al. 2023]. As a

third metric, we compute the earth mover’s distance (EMD) [Rubner

et al. 1998] between each motion trajectory and the ground truth.

In a second procedure, we generate full-resolution scale-space

slices at all integer scales. Notice that this involves spatial resolutions

from 256×256 for 𝑠 = 0 up to 65k×65k for 𝑠 = 8.We now compute the

PSNR between all slice pairs (PSNRinter), where higher-resolution

images are downsampled to match the lower-resolution ones. We

also compute the PSNR with respect to ground truth when it is

available (PSNRGT). As reconstructed scale spaces do not exactly

align with the references, we perform a global alignment using

translation and isotropic scaling.

5.1 Multiscale Pseudo-Reconstruction
We show scale-space pseudo-reconstructions in Fig. 10, top and a

corresponding quantitative evaluation in Tab. 1. More results can

be found in the supplemental video. We observe that we are able to

successfully learn orders-of-magnitude scale spaces, which allow

coherent zooming into any location. The last column in Tab. 1 re-

veals that our reconstructions are quite close to the ground truth on

average. We investigate this further in Fig. 9a, where we break down
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Fig. 9. (a) Reconstruction accuracy of our approach as a function of scale.
(b) FID scores as a function of scale in the generative setting.

reconstruction accuracy per scale. We see that accuracy decreases

for higher scales. This is because our model has the freedom to hal-

lucinate high-frequency content as long as the overall structure is

coherent i.e., our approach is a form of generative compression [San-

turkar et al. 2018]. We study this behavior in an additional experi-

ment, where we intentionally filter out training patches that overlap

a certain spatial region. In Fig. 13, we show that this exclusion leads

to inaccurate yet highly plausible content. In the supplemental doc-

ument, we show a best-effort result of stitching a subset of our

training patches using Adobe Photoshop.

5.2 Multiscale Generation
Results on multiscale generation are shown in Fig. 10, bottom and

Tab. 2. We compare against two baselines, AnyresGAN [Chai et al.

2022] and PULSE [Menon et al. 2020] on two datasets. Details on

how we modify these baselines to be able to handle our setting are

provided in the supplemental document. We observe that our scale

spaces are of significantly higher quality than those of the baselines,

both in terms of patch distributionsmeasured using FID [Heusel et al.

2017] and scale consistency. In Fig. 9b, we break down FID scores

into scale bins, revealing that slices of our scale-space samples are

well-behaved across scales. Notice that FID scores for coarse scales

are less reliable due to less available data. In Fig. 11 we demonstrate

qualitative results, while Fig. 12 shows flow trajectories of repre-

sentative samples across methods, confirming that our approach

delivers highly scale-consistent results.

5.3 Analysis
Compression. Our model requires 14M parameters, which is more

compact than the models used in AnyresGAN (32M parameters) and

PULSE (18M parameters). In contrast, an RGB gigapixel image at a

corresponding resolution of 65k × 65k pixels requires 13B scalars to

be stored. Thus, in terms of raw parameter reduction, our approach

achieves a compression of 885x. Lossless or lossy compression can

be applied on top of both approaches, e.g., JPEG for images and

model weight compression for StyleGAN [Belousov 2021]. To shed

some light on practical compression capabilities, we JPEG-compress

the raw Milkyway gigapixel image to obtain a file size equal to our

uncompressed model (JPEG quality: 32) andmeasure image quality at

the finest scale. As ourmodel only performs a pseudo-reconstruction

in which details do not align with the reference (Fig. 13), pixel-wise

PSNR is not an expressive metric for this task. We instead opt for

patch-based FID, which yields a score of 44 for our model and 114 for
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Fig. 10. Traversal of our scale spaces. The top four rows show pseudo-reconstructions, while the bottom six rows demonstrate generative scale spaces. The last
column in the top four rows shows the upsampled version of the image in the first column that corresponds to the area that the image in the second-to-last
column covers. Please refer to our supplemental video for demonstrations of continuous zooming and panning.
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Fig. 12. Pixel trajectories for representative samples of different methods. To obtain the trajectories, we compute an image sequence zooming into the image
center and concatenate optical flow vectors [Teed and Deng 2020] of adjacent images in the sequence per pixel. Here, we visualize the trajectories for 60 pixels
only to avoid clutter. A perfect flow field is radial, i.e., linearly expanding from the center (Ground Truth, right). Compared to the baselines, our method
provides trajectories closest to the ground truth.

the JPEG image, indicating that storing pixels of gigapixel images is

inferior to our continuous generative approach.

Ablations. In Tab. 3, we report the results of ablation studies on

the pseudo-reconstruction task usingMilkyway.

We first consider alternatives to our Beta sampling in Sec. 4.2.2.

We compare against a uniform sampling of the full-scale range, as

well as two scales. We observe that our Beta sampling improves all

relevant metrics.

We further study the effect of reducing dataset size. We observe

that, unsurprisingly, quality and consistency are highest with the

full dataset containing 96k patches, but even a significant reduction

in dataset size does not have a dramatic negative effect on our

model. Interestingly, our method still converges when using only

250 images distributed across the six scales. This, however, comes

with a severe degradation in image quality, while scale consistency

improves. Training on only 100 images diverges. Fig. 14 shows

corresponding qualitative results.

Finally, we investigate the reliance of our method on exact scale

labels by adding uniform random noise with an interval of two

scales to the labels. We observe a minor drop in FID score, while

scale consistency metrics are barely affected.

5.4 Limitations
Our distribution of Fourier features across generator layers (Sec. 4.1)

comes with a disadvantage: Compared to a vanilla setup, the gener-

ator network has less capacity to turn procedural frequency content

into final image output. This can occasionally lead to regularity arti-

facts in the generated patches. As illustrated in Fig. 15, some images

are faintly overlaid with parallel lines. We observe that these arti-

facts mostly appear at the finest scales. Additionally, we occasionally

observe saturated colorful blobs in our generated scale spaces. The

origin of these artifacts can also be traced back to the late injection

of Fourier features.

Aswithmany generative approaches, training times of ourmethod

are substantial. The (manual) effort our approach allows to save

ACM Trans. Graph., Vol. 43, No. 4, Article 131. Publication date: July 2024.
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Fig. 13. Pseudo-reconstruction of an area not present in the training dataset.
Our approach synthesizes plausible and coherent details, which do not
necessarily match the reference, e.g., stars are placed at different locations.
Milkyway image courtesy of Bartosz Wojczyński [2021].

96kGround Truth 3k 0.25k

Fig. 14. Influence of dataset size on reconstruction quality. Structures grad-
ually dissolve into regular patterns as training data becomes more sparse.
Ground truth image courtesy of Bartosz Wojczyński [2021].

Milkyway Moon Rembrandt

Fig. 15. Our solution occasionally produces artifacts in the form of overlays
with parallel lines in certain sparse areas.

during data capture has to be paid by increased processing time.

While we are not aware of any other method that is capable of

handling the unstructured inputs our approach can process, more

research at the foundations of generative modeling are necessary

to allow end users with only a single workstation to fully benefit

from our technology.

Table 3. Ablations.

Config. FID ↓
Scale Consistency

PSNRGT↑
Bias ↓ Angle ↓ EMD ↓ PSNRinter ↑

Uniform
full

9.5 0.20 1.6 2.77 25.1 23.8

Uniform2 14.6 0.19 1.8 2.97 24.9 23.6

250 Patches 48.4 0.14 1.74 1.71 26.6 21.7

500 Patches 28.9 0.21 1.7 1.45 26.6 21.1

1k Patches 23.5 0.15 1.26 1.57 26.3 22.8

3k Patches 14.4 0.23 5.1 8.46 25.0 23.5

12k Patches 10.6 0.17 2.1 3.00 25.7 23.8

Noisy Scales 14.4 0.21 1.6 1.87 25.5 23.2

Ours 9.00 0.21 1.5 2.08 25.7 23.9

6 CONCLUSION
We have presented a novel approach for learning a multiscale image

representation from a collection of low-resolution, unstructured

images. Our method enhances an alias-free generator with progres-

sive Fourier features distributed across various layers. Furthermore,

we have developed techniques to stabilize training and guarantee

scale consistency. The strength of our method is demonstrated in

both multi-scale generative modeling and pseudo-reconstruction of

scale spaces from unstructured patches. For the first time, our neural

representation achieves zoom-in factors of up to 256x, opening up

a new way for efficient modeling of multi-scale images.
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